Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 106(4): 2347-2360, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36823002

RESUMEN

This study consists of milk fatty acid (FA) data collected during 2 in vivo experiments. For this study, 8 cows from each experiment were included in a replicated 4 × 4 Latin square design. At the start of experiment 1 (Exp1) cows were at (mean ± standard deviation) 87 ± 34.6 d in milk, 625 ± 85.0 kg of body weight, and 32.1 ± 4.17 kg/d milk yield and at the start of experiment 2 (Exp2) cows were at 74 ± 18.2 d in milk, 629 ± 87.0 kg of body weight, and 37.0 ± 3.2 kg/d milk yield. In Exp1, we examined the effects of gradual replacement of barley with hulled oats (oats with hulls) on milk FA composition. The basal diet was grass silage and rapeseed meal (58 and 10% of diet DM, respectively), and the 4 grain supplements were formulated so that barley was gradually replaced by hulled oats at levels of 0, 33, 67, and 100% on dry matter basis. In Exp2, we examined (1) the effects of replacing barley with both hulled and dehulled oats (oats without hulls) and (2) the effects of gradual replacement of hulled oats with dehulled oats on milk FA composition. The basal diet was grass silage and rapeseed meal (60 and 10% of diet DM, respectively), and the 4 pelleted experimental concentrates were barley, hulled oats, a 50:50 mixture of hulled and dehulled oats, and dehulled oats on dry matter basis. In Exp1, gradual replacement of barley with hulled oats decreased relative proportions of 14:0, 16:0, and total saturated FA (SFA) in milk fat linearly, whereas proportions of 18:0, 18:1, total monounsaturated FA, and total cis unsaturated FA increased linearly. Transfer efficiency of total C18 decreased linearly when barley was replaced by hulled oats in Exp1. In Exp2, relative proportions of 14:0, 16:0, and total SFA were lower, whereas proportions of 18:0, 18:1, monounsaturated FA, and cis unsaturated FA were higher in milk from cows fed the oat diets than in milk from cows fed the barley diet. Moreover, in Exp2, gradual replacement of hulled oats with dehulled oats slightly decreased the relative proportion of 14:0 in milk fat but did not affect the proportions of 16:0, 18:0, 18:1, total SFA, monounsaturated FA, trans FA, or polyunsaturated FA. In Exp2, transfer efficiency of total C18 was lower when cows were fed the oat diets than when fed the barley diet and decreased linearly when hulled oats were replaced with dehulled oats. Predictions of daily CH4 emissions (g/d) using the on-farm available variables energy-corrected milk yield and body weight were not markedly improved by including milk concentrations of individual milk FA in prediction equations. In conclusion, replacement of barley with oats as a concentrate supplement for dairy cows fed a grass silage-based diet could offer a practical strategy to change the FA composition of milk to be more in accordance with international dietary guidelines regarding consumption of SFA.


Asunto(s)
Brassica napus , Brassica rapa , Hordeum , Femenino , Bovinos , Animales , Leche , Avena , Ácidos Grasos/farmacología , Ensilaje/análisis , Zea mays , Lactancia , Dieta/veterinaria , Ácidos Grasos Monoinsaturados , Grano Comestible , Rumen
3.
J Dairy Sci ; 105(9): 7482-7491, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35931473

RESUMEN

The effects of different ruminal protozoa (RP) on CH4 emissions from ruminants were evaluated in a meta-analysis, using 64 publications reporting data from 79 in vivo experiments. Experiments included in the database reported CH4 emissions (g/d) and total RP (TRP, log10 cells/mL) from the same group of animals. The relationship between CH4 emissions and RP (TRP, entodiniomorphids, and isotrichids), and TRP-, entodiniomorphid-, and isotrichid-based CH4 emission prediction models, were evaluated as mixed models with experiment as a random effect and weighted by the reciprocal of the standard error of the mean and centered around one. Positive associations existed between TRP and isotrichids with CH4 emissions but not between entodiniomorphids and CH4 emissions. A reduction in CH4 emissions was observed, averaging 7.96 and 4.25 g/d, per log unit reduction in TRP and isotrichid concentrations, respectively. Total RP and isotrichids were important variables in predicting CH4 emissions from ruminants. Isotrichid CH4 prediction model was more robust than the TRP, evidenciated by lower predicted sigma hat study (%), and error (%), and with higher concordance correlation coefficient. Both TRP and isotrichid models can accurately predict CH4 emissions across different ruminant types, as shown by the low square root of the mean square prediction error, with 6.59 and 4.08% of the mean of root of the mean square prediction error in the TRP and isotrichid models, respectively. Our results confirm that isotrichids are more important than entodiniomorphids in methanogenesis. Distinguishing these 2 populations yielded a more robust CH4 prediction model than combining them as total protozoa.


Asunto(s)
Metano , Rumiantes , Animales , Dieta , Metano/análisis , Rumen/química
4.
J Dairy Sci ; 105(9): 7462-7481, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35931475

RESUMEN

Manure nitrogen (N) from cattle contributes to nitrous oxide and ammonia emissions and nitrate leaching. Measurement of manure N outputs on dairy farms is laborious, expensive, and impractical at large scales; therefore, models are needed to predict N excreted in urine and feces. Building robust prediction models requires extensive data from animals under different management systems worldwide. Thus, the study objectives were (1) to collate an international database of N excretion in feces and urine based on individual lactating dairy cow data from different continents; (2) to determine the suitability of key variables for predicting fecal, urinary, and total manure N excretion; and (3) to develop robust and reliable N excretion prediction models based on individual data from lactating dairy cows consuming various diets. A raw data set was created based on 5,483 individual cow observations, with 5,420 fecal N excretion and 3,621 urine N excretion measurements collected from 162 in vivo experiments conducted by 22 research institutes mostly located in Europe (n = 14) and North America (n = 5). A sequential approach was taken in developing models with increasing complexity by incrementally adding variables that had a significant individual effect on fecal, urinary, or total manure N excretion. Nitrogen excretion was predicted by fitting linear mixed models including experiment as a random effect. Simple models requiring dry matter intake (DMI) or N intake performed better for predicting fecal N excretion than simple models using diet nutrient composition or milk performance parameters. Simple models based on N intake performed better for urinary and total manure N excretion than those based on DMI, but simple models using milk urea N (MUN) and N intake performed even better for urinary N excretion. The full model predicting fecal N excretion had similar performance to simple models based on DMI but included several independent variables (DMI, diet crude protein content, diet neutral detergent fiber content, milk protein), depending on the location, and had root mean square prediction errors as a fraction of the observed mean values of 19.1% for intercontinental, 19.8% for European, and 17.7% for North American data sets. Complex total manure N excretion models based on N intake and MUN led to prediction errors of about 13.0% to 14.0%, which were comparable to models based on N intake alone. Intercepts and slopes of variables in optimal prediction equations developed on intercontinental, European, and North American bases differed from each other, and therefore region-specific models are preferred to predict N excretion. In conclusion, region-specific models that include information on DMI or N intake and MUN are required for good prediction of fecal, urinary, and total manure N excretion. In absence of intake data, region-specific complex equations using easily and routinely measured variables to predict fecal, urinary, or total manure N excretion may be used, but these equations have lower performance than equations based on intake.


Asunto(s)
Lactancia , Nitrógeno , Animales , Bovinos , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Femenino , Estiércol , Leche/química , Nitrógeno/metabolismo , Urea/metabolismo
5.
J Dairy Sci ; 105(4): 3049-3063, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35094851

RESUMEN

Numerous empirical and mechanistic models predicting methane (CH4) production are available. The aim of this work was to evaluate the Molly cow model and the Nordic cow model Karoline in predicting CH4 production in cattle using a data set consisting of 267 treatment means from 55 respiration chamber studies. The dietary and animal characteristics used for the model evaluation represent the range of diets fed to dairy and growing cattle. Feedlot diets and diets containing additives mitigating CH4 production were not included in the data set. The relationships between observed and predicted CH4 (pCH4) were assessed by regression analysis using fixed and mixed model analysis. Residual analysis was conducted to evaluate which dietary factors were related to prediction errors. The fixed model analysis showed that the Molly predictions were related to the observed data (± standard error) as CH4 (g/d) = 0.94 (±0.022) × pCH4 (g/d) + 31 (±6.9) [root mean squared prediction error (RMSPE) = 45.0 g/d (14.9% of observed mean), concordance correlation coefficient (CCC) = 0.925]. The corresponding equation for the Karoline model was CH4 (g/d) = CH4 (g/d) = 0.98 (±0.019) × pCH4 (g/d) + 7.0 (±6.0) [RMSPE = 35.0 g/d (11.6%), CCC = 0.953]. Proportions of mean squared prediction error attributable to mean and linear bias and random error were 10.6, 2.2, and 87.2% for the Molly model, and 1.3, 0.3, and 98.6% for the Karoline model, respectively. Mean and linear bias were significant for the Molly model but not for the Karoline model. With the mixed model regression analysis RMSPE adjusted for random study effects were 10.9 and 7.9% for the Molly model and the Karoline model, respectively. The residuals of CH4 predictions were more strongly related to factors associated with CH4 production (feeding level, digestibility, fat concentrations) with the Molly model compared with the Karoline model. Especially large mean (underprediction) and linear bias (overprediction of low digestibility diets relative to high digestibility diets) contributed to the prediction error of CH4 yield with the Molly model. It was concluded that both models could be used for prediction of CH4 production in cattle, but Karoline was more accurate and precise based on smaller RMSPE, mean bias, and slope bias, and greater CCC. The importance of accurate input data of key variables affecting diet digestibility is emphasized.


Asunto(s)
Bovinos , Animales , Dieta/veterinaria , Femenino , Lactancia , Metano , Leche/química , Análisis de Regresión
6.
J Dairy Sci ; 104(12): 12540-12552, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34531047

RESUMEN

Sixteen Nordic Red dairy cows, at 80 ± 4.6 d in milk and with an average body weight of 624 ± 91.8 kg, were used in a replicated 4 × 4 Latin square design to investigate the effects of different concentrate supplements on milk production, enteric CH4 emissions, ruminal fermentation, digestibility, and energy utilization. The cows were blocked into 4 groups based on parity and milk yield and randomly assigned to 1 of 4 experimental concentrates: (1) barley, (2) hulled oats, (3) an oat mixture consisting of hulled and dehulled oats, 50:50 on dry matter basis, and (4) dehulled oats; canola meal was a protein supplement in all 4 concentrates. The cows were fed grass silage and experimental concentrate (forage-to-concentrate ratio 60:40 on dry matter basis) ad libitum. To compare the effects of barley and oats, the barley diet was compared with the overall mean of the hulled oat, oat mixture, and dehulled oat diets. To investigate the effects of gradual replacement of hulled oats with dehulled oats, linear and quadratic contrasts were specified. Milk and energy-corrected milk (ECM) yield were higher on the oat diets compared with the barley diet but were not affected by the type of oats. Concentrations of milk constituents were not affected by grain species or type of oats, except for protein concentration, which was lower on the oat diets than on the barley diet. Feeding the oat diets led to higher milk protein yield and higher milk urea N concentrations. Feed efficiency tended to be higher on the oat diets, and linearly increased with increased inclusion of dehulled oats. Methane emissions (g/d) and CH4 yield (g/kg of dry matter intake) were unaffected by grain species but increased linearly with increasing inclusion of dehulled oats in the diet. Because of higher ECM yield, CH4 intensity (g/kg of ECM) was on average 5.7% lower from cows on the oat diets than on the barley diet. Ruminal fermentation was not affected by dietary treatment. Total-tract apparent digestibility of organic matter, crude protein, and neutral detergent fiber was unaffected by grain species but linearly increased with increasing inclusion of dehulled oats. Gross energy content was higher on the oat diets and linearly increased with increasing inclusion of dehulled oats. Feeding the oat diets led to a lower ratio of CH4 energy to gross energy intake, greater milk energy and heat production but no change in energy balance. Gradual replacement of hulled oats with dehulled oats linearly increased gross energy digestibility, CH4 energy, metabolizable energy intake, heat production, and energy balance. We observed no effect of dietary treatment on efficiency of metabolizable energy use for lactation. In conclusion, replacing barley with any type of oats increased milk and ECM yield, which led to a 5.7% decrease in CH4 intensity. In addition, dehulling of oats before feeding is unnecessary because it did not significantly improve production performance of dairy cows in positive energy balance.


Asunto(s)
Hordeum , Ensilaje , Animales , Avena , Bovinos , Dieta/veterinaria , Digestión , Femenino , Lactancia , Metano , Embarazo , Rumen , Ensilaje/análisis , Zea mays
7.
J Dairy Sci ; 104(5): 5617-5630, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33685675

RESUMEN

This study evaluated the effects of gradual replacement of barley with oats on enteric CH4 emissions, rumen fermentation, diet digestibility, milk production, and energy utilization in dairy cows fed a grass silage-based diet. Sixteen lactating Nordic Red dairy cows received a total mixed ration [58:42 forage:concentrate on dry matter (DM) basis]. Grass silage (Phleum pratense) was the sole forage with canola meal (10% of diet DM) as a protein supplement. The effects of gradual replacement of barley with oats on DM basis were evaluated using a replicated 4 × 4 Latin square design with 21 d periods. The grain supplements (30% of diet DM) consisted of 100% barley, 67% barley and 33% oats, 33% barley and 67% oats, and 100% oats. In addition to intake, milk production, and digestibility measurements, CH4 emissions were measured by the GreenFeed system (C-Lock Inc.). The energy metabolism was estimated from the gas exchange measurements recorded by the GreenFeed unit. The last 10 d of each period were used for recordings of gas exchanges, feed intake and milk production. Dry matter intake, body weight, milk yield, and energy-corrected milk yield were not affected by gradual replacement of barley with oats in the diet. Increased inclusion of oats linearly decreased CH4 emissions from 467 to 445 g/d, and CH4 intensity from 14.7 to 14.0 g/kg energy-corrected milk. In addition, the ratio of CH4 to CO2 decreased with increasing inclusion of oats in the diet. Digestibility of organic matter, neutral detergent fiber, and potentially digestible neutral detergent fiber decreased linearly with increasing inclusion of oats. Increased inclusion of oats linearly increased fecal energy from 121 to 133 MJ/d, whereas urinary energy and heat production were not affected by dietary treatment. This resulted in a linear decrease in metabolizable energy intake. However, increased levels of oat in the diet did not significantly affect energy balance or efficiency of metabolizable energy utilization for lactation. This study concludes that barley could be replaced with oats in the diet of dairy cows fed a grass silage-based diet to mitigate CH4 emissions without having any adverse effects on productivity or energy balance. However, the effect of replacing barley with oats on CH4 emissions is dependent on the differences between barley and oats in the concentrations of indigestible neutral detergent fiber and fat.


Asunto(s)
Hordeum , Rumen , Animales , Avena , Bovinos , Dieta/veterinaria , Digestión , Femenino , Fermentación , Lactancia , Metano/metabolismo , Leche , Rumen/metabolismo , Ensilaje/análisis , Zea mays
8.
J Dairy Sci ; 104(6): 6701-6714, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33685692

RESUMEN

Measurements of energy balance (EB) require the use of respiration chambers, which are quite expensive and laborious. The GreenFeed (GF) system (C-Lock Inc.) has been developed to offer a less expensive, user friendly alternative. In this study, we used the GF system to estimate the EB of cows in early lactation and compared it with EB predicted from energy requirements for dairy cows in the Finnish feeding standards. We also evaluated the association between milk fatty acids and the GF estimated EB. The cows were fed the same grass silage but supplemented with either cereal grain or fibrous by-product concentrate. Cows were followed from 1 to 18 wk of lactation, and measurements of energy metabolism variables were taken. Data were subjected to ANOVA using the mixed model procedure of SAS (SAS Institute Inc.). The repeatability estimates of the gaseous exchanges from the GF were moderate to high, presenting an opportunity to use it for indirect calorimetry in EB estimates. Energy metabolism variables were not different between cows fed different concentrates. However, cows fed the grain concentrate produced more methane (24.0 MJ/d or 62.9 kJ/MJ of gross energy) from increased digestibility than cows fed the by-product concentrate (21.3 MJ/d or 56.5 kJ/MJ of gross energy). Nitrogen metabolism was also not different between the diets. Milk long-chain fatty acids displayed an inverse time course with EB and de novo fatty acids. There was good concordance (0.85) between EB predicted using energy requirements derived from the Finnish feed table and EB estimated by the GF system. In conclusion, the GF can accurately estimate EB in early-lactating dairy cows. However, more data are needed to further validate the system for a wide range of dietary conditions.


Asunto(s)
Lactancia , Leche , Animales , Bovinos , Dieta/veterinaria , Metabolismo Energético , Ácidos Grasos , Femenino , Ensilaje/análisis
9.
PLoS One ; 15(8): e0235357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760112

RESUMEN

We evaluated the between-cow (b-cow) variation and repeatability in omasal and milk fatty acids (FA) related to methane (CH4) emission. The dataset was originated from 9 studies with rumen-cannulated dairy cows conducted using either a switch-back or a Latin square design. Production of CH4 per mole of VFA (Y_CH4VFA) was calculated based on VFA stoichiometry. Experiment, diet within experiment, period within experiment, and cow within experiment were considered as random factors. Empirical models were developed between the variables of interest by univariate and bivariate mixed model regression analysis. The variation associated with diet was higher than the b-cow variation with low repeatability (< 0.25) for milk odd- and branch-chain FA (OBCFA). Similarly, for de novo synthesized milk FA, diet variation was ~ 3-fold greater than the b-cow variation; repeatability for these FA was moderate to high (0.34-0.58). Also, for both cis-9 C18:1 and cis-9 cis-12 cis-15 C18:3 diet variation was more than double the b-cow variation, but repeatability was moderate. Among the de novo milk FA, C4:0 was positively related with stoichiometric Y_CH4VFA, while for OBCFA, anteiso C15:0 and C15:0 were negatively related with it. Notably, when analyzing the relationship between omasal FA and milk FA we observed positive intercept estimates for all the OBCFA, which may indicate endogenous post-ruminal synthesis of these FA, most likely in the mammary gland. For milk iso C13:0, iso C15:0, anteiso C15:0, and C15:0 were positively influenced by omasal proportion of their respective FA and by energy balance. In contrast, the concentration of milk C17:0, iso C18:0, C18:0, cis-11 C18:1, and cis-9 cis-12 cis-15 C18:3 were positively influenced by omasal proportion of their respective FA but negatively related to calculated energy balance. Our findings demonstrate that for most milk FA examined, a larger variation is attributed to diet than b-cow differences with low to moderate repeatability. While some milk FA were positively or negatively related with Y_CH4VFA, there was a pronounced effect of calculated energy balance on these estimates. Additionally, even though OBCFA have been indicated as markers of rumen function, our results suggest that endogenous synthesis of these FA may occur, which therefore, may limit the utilization of milk FA as a proxy for CH4 predictions for cows fed the same diet.


Asunto(s)
Variación Biológica Poblacional , Efecto Invernadero , Lactancia/fisiología , Metano/metabolismo , Leche/química , Alimentación Animal , Animales , Bovinos , Industria Lechera , Conjuntos de Datos como Asunto , Ácidos Grasos/análisis , Femenino , Rumen/metabolismo
10.
J Dairy Sci ; 103(10): 9090-9095, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32747114

RESUMEN

Breeding cows for low CH4 emissions requires that the trait is variable and that it can be recorded with low cost from an adequate number of individuals and with high precision, but not necessarily with high accuracy if the trait is measured with high repeatability. The CH4:CO2 ratio in expired breath is a trait often used as a tracer with the production of CO2 predicted from body weight (BW), energy-corrected milk yield, and days of pregnancy. This approach assumes that efficiency of energy utilization for maintenance and production is constant. Data (307 cow-period observations) from 2 locations using the same setup for measuring CH4 and CO2 in respiration chambers were compiled, and observed production of CH4 and CO2 was compared with the equivalent predicted production using 2 different approaches. Carbon dioxide production was predicted using a previously reported model based on metabolic BW and energy-corrected milk production and a currently developed model based on energy requirements and the relationship between observed CO2 and heat production (models 1 and 2, respectively). Animals used were categorized (low, medium, and high efficiency) according to (1) residual feed intake and (2) residual milk production. Model 1 underestimated CH4 production by 15%, whereas model 2 overestimated CH4 by 1.4% for the whole database. Model 1 underestimated CO2 production by 2.8 and 0.9 kg/d for low- and high-efficiency cows, respectively, whereas model 2 underestimated CO2 production by 0.9 kg/d for low-efficient animals but overestimated it by 1.2 kg/d for high-efficiency cows. Efficient cows produce less heat, and consequently CO2, per unit of metabolic body weight and energy-corrected milk than inefficient cows, challenging the use of CO2 as a tracer gas. Because of biased estimates of CO2 production, the models overestimated CH4 production of high-efficiency cows by, on average, 17% relative to low-efficiency cows, respectively. Selecting low CH4-emitting cows using a CO2 tracer method can therefore favor inefficient cows over efficient cows.


Asunto(s)
Alimentación Animal , Dióxido de Carbono/metabolismo , Bovinos/metabolismo , Industria Lechera/métodos , Dieta/veterinaria , Metano/biosíntesis , Animales , Peso Corporal , Ingestión de Alimentos , Granjas , Femenino , Indicadores y Reactivos , Leche , Termogénesis
12.
J Dairy Sci ; 103(9): 7968-7982, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32684452

RESUMEN

A meta-analysis based on an individual-cow data set was conducted to investigate between-cow variations in the components and measurements of feed efficiency (FE) and to explore the associations among these components. Data were taken from 31 chamber studies, consisting of a total of 841 cow/period observations. The experimental diets were based on grass or corn silages, fresh grass, or a mixture of fresh grass and straw, with cereal grains or by-products as energy supplements, and soybean or canola meal as protein supplements. The average forage-to-concentrate ratio across all diets on a dry matter basis was 56:44. Variance component and repeatability estimates of FE measurements and components were determined using diet, period, and cow within experiment as random effects in mixed procedures of SAS (SAS Institute Inc., Cary, NC). The between-cow coefficient of variation (CV) in gross energy intake (GE; CV = 0.10) and milk energy (El) output as a proportion of GE (El/GE; CV = 0.084) were the largest among all component traits. Similarly, the highest repeatability estimates (≥0.50) were observed for these 2 components. However, the between-cow CV in digestibility (DE/GE), metabolizability [metabolizable energy (ME)/GE], methane yield (CH4E/GE), proportional urinary energy output (UE/GE), and heat production (HP/GE), as well as the efficiency of ME use for lactation (kl), were rather small. The least repeatable component of FE was UE/GE. For FE measurements, the between-cow CV in residual energy-corrected milk (RECM) was larger than for residual feed intake (RFI), suggesting a greater possibility for genetic gain in RECM than in RFI. A high DE/GE was associated with increased CH4E/GE (r = 0.24), HP/GE (r = 0.12), ME/GE (r = 0. 91), energy balance as a proportion of GE (EB/GE; r = 0.35), and kl (r = 0.10). However, no correlation between DE/GE and GE intake or UE/GE was observed. Increased proportional milk energy adjusted to zero energy balance (El(0)/GE) was associated with increases in DE/GE, ME/GE, EB/GE, and kl but decreases in UE/GE, CH4E/GE, and HP/GE, with no effect on GE intake. In conclusion, several mechanisms are involved in the observed differences in FE among dairy cows, and reducing CH4E yield (CH4E/GE) may inadvertently result in reduced GE digestibility. However, the selection of dairy cows with improved energy utilization efficiencies offers an effective approach to lower enteric CH4 emissions.


Asunto(s)
Alimentación Animal , Variación Biológica Poblacional , Bovinos/fisiología , Alimentación Animal/análisis , Animales , Brassica napus , Dieta/veterinaria , Suplementos Dietéticos , Grano Comestible , Ingestión de Energía , Metabolismo Energético , Femenino , Lactancia , Metano/biosíntesis , Leche , Poaceae/metabolismo , Ensilaje , Glycine max , Termogénesis , Zea mays
13.
J Dairy Sci ; 103(8): 7081-7093, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32505411

RESUMEN

The present study was conducted to investigate ruminal N metabolism in dairy cows using 15N labeled N sources [ammonia N (AN), soluble non-ammonia N (SNAN) from rapeseed meal, and insoluble non-ammonia N (NAN) from rapeseed meal]. To describe the observed pattern of 15N transactions in the rumen, dynamic compartmental models were developed. The experiment consisted of 3 experimental treatments allocated to 4 cows according to a changeover design. The results from 2 treatments (AN and rapeseed meal SNAN) are reported in this paper. Ammonia N and rapeseed SNAN, both labeled with 15N, were administered intraruminally. Rumen evacuations in combination with grab samples from the rumen contents were used to determine ruminal N pool sizes. The 15N-atom% excess was determined in N fractions of rumen digesta samples that were distributed between 0 and 82 h after dosing. For the AN treatment, a 2-compartment model was developed to describe the observed pattern in 15N-atom% excess pool sizes of AN and bacterial N and to estimate kinetic parameters of ruminal 15N transactions. For the SNAN treatment, an additional compartment of SNAN was included in the model. Model simulations were used to estimate N fluxes in the rumen. Both models described the observed pattern of 15N-atom% excess pool sizes accurately, based on small residuals between observed and predicted values. Immediate increases in 15N-atom% excess of bacterial N with AN treatment suggested that microbes absorbed AN from extracellular pools rapidly to maintain sufficient intracellular concentrations. Proportionally 0.69 of the AN dose was recovered as NAN flow from the rumen. A rapid disappearance of labeled SNAN from rumen fluid and appearance in bacterial N pool indicated that, proportionally, 0.56 of SNAN was immediately either adsorbed to bacterial cell surfaces or taken up to intracellular pools. Immediate uptake of labeled SNAN was greater than that of AN (proportionally 0.56 vs. 0.16 of the dose). Degradation rate of SNAN to AN was relatively slow (0.46/h), but only 0.08 of the SNAN dose was estimated to escape ruminal degradation because of rapid uptake by the bacteria. Overall, losses of the 15N dose as AN absorption and outflow from the rumen were higher (P < 0.01) for the AN than the SNAN treatment (0.31 and 0.11 of the dose, respectively). Consequently, recovery as NAN flow was greater for SNAN than for AN treatment (0.89 vs. 0.69 of the dose). Estimated rate of bacterial N recycling to AN was on average 0.006/h, which suggests that N losses due to intraruminal recycling are small in dairy cows fed at high intake levels. We conclude that SNAN isolated from rapeseed meal had better ruminal N utilization efficiency than AN, as indicated by smaller ruminal N losses as AN (0.11 vs. 0.31 of the dose) and greater bacterial N flow (0.81 vs. 0.69 of the dose). Furthermore, the current findings indicate that rapid adsorption of soluble proteins to bacterial cells plays an important role in ruminal N metabolism.


Asunto(s)
Amoníaco/metabolismo , Bacterias/metabolismo , Brassica napus/química , Bovinos/metabolismo , Nitrógeno/metabolismo , Animales , Duodeno/metabolismo , Femenino , Lactancia , Isótopos de Nitrógeno/análisis , Proteínas de Plantas/metabolismo , Rumen/metabolismo
14.
J Dairy Sci ; 103(9): 7983-7997, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32534917

RESUMEN

The objective of the present study was to investigate factors related to variation in feed efficiency (FE) among cows. Data included 841 cow/period observations from 31 energy metabolism studies assembled across 3 research stations. The cows were categorized into low-, medium-, and high-FE groups according to residual feed intake (RFI), residual energy-corrected milk (RECM), and feed conversion efficiency (FCE). Mixed model regression was conducted to identify differences among the efficiency groups in animal and energy metabolism traits. Partial regression coefficients of both RFI and RECM agreed with published energy requirements more closely than cofficients derived from production experiments. Within RFI groups, efficient (Low-RFI) cows ate less, had a higher digestibility, produced less methane (CH4) and heat, and had a higher efficiency of metabolizable energy (ME) utilization for milk production. High-RECM (most efficient) cows produced 6.0 kg/d more of energy-corrected milk (ECM) than their Low-RECM (least efficient) contemporaries at the same feed intake. They had a higher digestibility, produced less CH4 and heat, and had a higher efficiency of ME utilization for milk production. The contributions of improved digestibility, reduced CH4, and reduced urinary energy losses to increased ME intake at the same feed intake were 84, 12, and 4%, respectively. For both RFI and RECM analysis, increased metabolizability contributed to approximately 35% improved FE, with the remaining 65% attributed to the greater efficiency of utilization of ME. The analysis within RECM groups suggested that the difference in ME utilization was mainly due to the higher maintenance requirement of Low-RECM cows compared with Medium- and High-RECM cows, whereas the difference between Medium- and High-RECM cows resulted mainly from the higher efficiency of ME utilization for milk production in High-RECM cows. The main difference within FCE (ECM/DMI) categories was a greater (8.2 kg/d) ECM yield at the expense of mobilization in High-FCE cows compared with Low-FCE cows. Methane intensity (CH4/ECM) was lower for efficient cows than for inefficient cows. The results indicated that RFI and RECM are different traits. We concluded that there is considerable variation in FE among cows that is not related to dilution of maintenance requirement or nutrient partitioning. Improving FE is a sustainable approach to reduce CH4 production per unit of product, and at the same time improve the economics of milk production.


Asunto(s)
Alimentación Animal , Bovinos/metabolismo , Digestión , Metabolismo Energético , Animales , Cámaras de Exposición Atmosférica/veterinaria , Brassica napus/metabolismo , Dieta/veterinaria , Femenino , Manipulación de Alimentos , Calefacción , Lactancia , Masculino , Metano/biosíntesis , Leche , Necesidades Nutricionales , Respiración
15.
Animal ; 14(4): 753-762, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31658932

RESUMEN

This study investigated the effect of forage type (grass or red clover) and harvesting time (primary growth or regrowth) of silage on energy and N utilisation by sheep fed at maintenance level. Specifically, the assumption of constant loss of energy of digestible organic matter from energy losses in urine and CH4 applied in evaluation of silage metabolisable energy (ME) was investigated. Urinary excretion of high-energy phenolic compounds related to solubilisation of lignin was assumed to affect urinary energy (UE) losses from sheep fed highly digestible grass silage (GS). A total of 25 primary growth and regrowth silages of timothy (Phleum pratense) and meadow fescue (Festuca pratensis) grass mixtures and red clover (Trifolium pratense) samples collected in digestibility trials with sheep, including faecal and urine samples, were used for energy and N determinations. Urinary concentration of monophenolic compounds and CH4 emissions in vitro were also analysed. Daily faecal N output, CH4 yield (MJ/kg DM intake), proportion of CH4 energy in digestible energy (DE) and proportion of UE in DE were greater (P ≤ 0.03) in sheep fed red clover silage (RCS) than GS. Furthermore, less (P = 0.01) energy was lost as UE of DE in sheep fed primary growth GS compared with the other treatments. The relationship between UE and silage N intake or urinary N output for both silage types (i.e. grass v. red clover) was strong, but the fit of the regressions was better for GS than RCS. The CH4/DE ratio decreased (P < 0.05) and the UE/DE ratio increased (P < 0.05) with increasing organic matter digestibility in RCS. These relationships were not significant (P < 0.05) for the GS diets. The regression coefficient was higher (P < 0.05) for GS than RCS when regressing ME concentration on digestible organic matter. The results of this study imply that ME/DE ratio is not constant across first-cut GS of different maturities. The ME production response may be smaller from highly digestible first-cut GS but could not be clearly related to urinary excretion of monophenols derived from solubilisation of lignin. Furthermore, energy lost in urine was not clearly defined for RCS and was much more predictable for GS from silage N concentration.


Asunto(s)
Metabolismo Energético , Nitrógeno/metabolismo , Poaceae , Ovinos/fisiología , Ensilaje/análisis , Trifolium , Animales , Pared Celular/química , Dieta/veterinaria , Digestión , Heces/química , Femenino , Festuca , Hidroxibenzoatos/metabolismo , Hidroxibenzoatos/orina , Lignina/metabolismo , Metano/análisis , Metano/metabolismo , Leche/metabolismo , Nitrógeno/orina , Phleum
16.
J Dairy Sci ; 103(3): 2333-2346, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31882208

RESUMEN

Accurate analysis of degradability of silage neutral detergent fiber (NDF) is important for diet formulation and to predict lactational performance of dairy cows. In this study, 5 corn silage hybrids ensiled for 0 (unfermented), 30, 60, 120, and 150 d were used to determine the effects of ensiling time on silage neutral detergent fiber degradability (NDFD) and to assess the relationships between near-infrared reflectance spectroscopy (NIR) NDF-related analyses and in situ NDFD variables. In addition, the relationships between dietary concentration of indigestible NDF, 288-h incubation (iNDF288), or undegraded NDF, 240-h incubation (uNDF240), and in vivo total-tract apparent organic matter and NDF digestibility were studied in total mixed ration samples from 16 experiments with lactating dairy cows. Ensiling time had no effect on silage NDF concentration; however, the ratio of acid detergent fiber ÷ NDF increased, and estimated hemicellulose concentration decreased quadratically with ensiling time. Also, concentration of NDF-bound protein decreased, and that of lignin increased linearly with ensiling time. These changes in silage fiber composition resulted in a linear decrease in in situ effective degradability of silage NDF with increasing ensiling time. The indigestible fraction of NDF and concentration of structural carbohydrates were not affected by ensiling time. Correlations of in situ NDFD variables with laboratory NIR NDFD analyses were weak to moderate. The relationship of corn silage uNDF240 with lignin concentration or 30-h NDFD (all NIR analyses) was remarkably good (R2 = 0.73 and 0.88, respectively). The relationship between in situ iNDF288 concentration (but not uNDF240) and in vivo total-tract apparent digestibility of dietary organic matter and NDF was good (R2 = 0.72 and 0.80, respectively). In conclusion, in situ degradability of silage NDF linearly decreased from 0 to 150 d ensiling time, primarily caused by a decrease in concentrations of hemicellulose and NDF-bound protein. In situ NDF degradability measurements and common laboratory NIR NDF-related analyses were generally poorly correlated. We found a good relationship between in vivo NDF digestibility and dietary concentration of iNDF288 determined in situ, but the relationship with uNDF240 was poor.


Asunto(s)
Bovinos/fisiología , Fibras de la Dieta/análisis , Ensilaje/análisis , Zea mays , Animales , Detergentes , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Digestión , Femenino , Lactancia , Lignina/análisis , Lignina/metabolismo , Rumen/metabolismo , Factores de Tiempo
17.
J Dairy Sci ; 103(2): 1404-1415, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31785868

RESUMEN

The objective of this in vitro study was to determine the effects of different barley and oat varieties on CH4 production, digestibility, and rumen fermentation patterns in dairy cows. Our hypothesis was that oat-based diets would decrease CH4 production compared with barley-based diets, and that CH4 production would differ between varieties within grain species. To evaluate this hypothesis, we conducted an in vitro experiment using a fully automated gas production technique, in which the total gas volume was automatically recorded by the system. The experiment consisted of triplicate 48-h incubations with 16 treatments, including 8 different varieties of each grain. The grain varieties were investigated as a mix with an early-cut grass silage (1:1 ratio of grain to silage on a dry matter basis) and mixed with buffered rumen fluid. We estimated predicted in vivo total gas production and CH4 production by applying a set of models to the gas production data obtained by the in vitro system. We also evaluated in vitro digestibility and fermentation characteristics. The variety of grain species did not affect total gas production, CH4 production, or fermentation patterns in vitro. However, in vitro-determined digestibility and pH were affected by variety of grain species. Grain species affected total gas and CH4 production: compared with barley-based diets, oat-based diets decreased total gas production and CH4 production by 8.2 and 8.9%, respectively, relative to dry matter intake. Grain species did not affect CH4 production relative to in vitro true dry matter digestibility. Oat-based diets decreased digestibility and total volatile fatty acid production, and maintained a higher pH at 48 h of incubation compared with barley-based diets. Grain species did not affect fermentation patterns, except for decreased molar proportions of valerate with oat-based diets. These results suggest that replacing barley with oats in dairy cow diets could decrease enteric CH4 production.


Asunto(s)
Avena , Bovinos/fisiología , Ácidos Grasos Volátiles/metabolismo , Hordeum , Metano/metabolismo , Ensilaje/análisis , Animales , Dieta/veterinaria , Digestión , Grano Comestible , Femenino , Fermentación , Lactancia , Rumen/metabolismo
18.
J Dairy Sci ; 102(7): 5811-5852, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31030912

RESUMEN

Nitrogen is a component of essential nutrients critical for the productivity of ruminants. If excreted in excess, N is also an important environmental pollutant contributing to acid deposition, eutrophication, human respiratory problems, and climate change. The complex microbial metabolic activity in the rumen and the effect on subsequent processes in the intestines and body tissues make the study of N metabolism in ruminants challenging compared with nonruminants. Therefore, using accurate and precise measurement techniques is imperative for obtaining reliable experimental results on N utilization by ruminants and evaluating the environmental impacts of N emission mitigation techniques. Changeover design experiments are as suitable as continuous ones for studying protein metabolism in ruminant animals, except when changes in body weight or carryover effects due to treatment are expected. Adaptation following a dietary change should be allowed for at least 2 (preferably 3) wk, and extended adaptation periods may be required if body pools can temporarily supply the nutrients studied. Dietary protein degradability in the rumen and intestines are feed characteristics determining the primary AA available to the host animal. They can be estimated using in situ, in vitro, or in vivo techniques with each having inherent advantages and disadvantages. Accurate, precise, and inexpensive laboratory assays for feed protein availability are still needed. Techniques used for direct determination of rumen microbial protein synthesis are laborious and expensive, and data variability can be unacceptably large; indirect approaches have not shown the level of accuracy required for widespread adoption. Techniques for studying postruminal digestion and absorption of nitrogenous compounds, urea recycling, and mammary AA metabolism are also laborious, expensive (especially the methods that use isotopes), and results can be variable, especially the methods based on measurements of digesta or blood flow. Volatile loss of N from feces and particularly urine can be substantial during collection, processing, and analysis of excreta, compromising the accuracy of measurements of total-tract N digestion and body N balance. In studying ruminant N metabolism, nutritionists should consider the longer term fate of manure N as well. Various techniques used to determine the effects of animal nutrition on total N, ammonia- or nitrous oxide-emitting potentials, as well as plant fertilizer value, of manure are available. Overall, methods to study ruminant N metabolism have been developed over 150 yr of animal nutrition research, but many of them are laborious and impractical for application on a large number of animals. The increasing environmental concerns associated with livestock production systems necessitate more accurate and reliable methods to determine manure N emissions in the context of feed composition and ruminant N metabolism.


Asunto(s)
Crianza de Animales Domésticos/métodos , Ciencias de la Nutrición Animal/métodos , Nitrógeno/metabolismo , Rumiantes/metabolismo , Alimentación Animal/análisis , Ciencias de la Nutrición Animal/instrumentación , Fenómenos Fisiológicos Nutricionales de los Animales , Animales
19.
Animal ; 13(10): 2277-2288, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30806342

RESUMEN

Direct measurement of individual animal dry matter intake (DMI) remains a fundamental challenge to assessing dairy feed efficiency (FE). Digesta marker, is currently the most used indirect technique for estimating DMI in production animals. In this meta-analysis we evaluated the performance of marker-based estimates against direct or observed measurements and developed equations for the prediction of FE (g energy-corrected milk (ECM)/kg DMI). Data were taken from 29 change-over studies consisting of 416 cow-within period observations. Most studies used more than one digesta marker. So, for each observed measurement of DMI, faecal dry matter output (FDMO) and apparent total tract dry matter digestibility (DMD), there was one or more corresponding marker estimate. There were 924, 409 and 846 observations for estimated FDMO (eFDMO), estimated apparent total tract DMD (eDMD) and estimated DMI (eDMI), respectively. The experimental diets were based mainly on grass silage, with soya bean or rapeseed meal as protein supplements and cereal grains or by-products as energy supplements. Across all diets, average forage to concentrate ratio on a dry matter (DM) basis was 59 : 41. Variance component and repeatability estimates of observed and marker estimations were determined using random factors in mixed procedures of SAS. Between-cow CV in observed FDMO, DMD and DMI was, 10.3, 1.69 and 8.04, respectively. Overall, the repeatability estimates of observed variables were greater than their corresponding marker-based estimates of repeatability. Regression of observed measurements on marker-based estimates gave good relationships (R2=0.87, 0.68, 0.74 and 0.74, relative prediction error =10.9%, 6.5%, 15.4% and 18.7%for FDMO, DMD, DMI and FE predictions, respectively). Despite this, the mean and slope biases were statistically significant (P<0.001) for all regressions. More than half of the errors in all regressions were due to mean and slope biases (52.4% 87.4%, 82.9% and 85.8% for FDMO, DMD, DMI and FE, respectively), whereas the contributions of random errors were small. Based on residual variance, the best model for predicting FE developed from the dataset was FE (g ECM/kg DMI)=1179(±54.1) +38.2(±2.05)×ECM(kg/day)-0.64(±0.051)×BW (kg)-75.6(±4.39)×eFDMO (kg/day). Although eDMD was positively related to FE, it only showed a tendency to reduce the residual variance. Despite inaccuracy in marker procedures, eFDMO from external markers provided a reliable determination for FE measurement. However, DMD estimated by internal markers did not improve prediction of FE, probably reflecting small variability.


Asunto(s)
Bovinos/fisiología , Ingestión de Alimentos , Ingestión de Energía , Leche/metabolismo , Ensilaje/análisis , Alimentación Animal/análisis , Animales , Biomarcadores/análisis , Brassica napus , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Heces , Femenino , Lactancia , Poaceae , Análisis de Regresión , Glycine max
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...